Polymer Bulletin

© Springer-Verlag 1982

Triblock Copolymers of 2-Methyl-2-Oxazoline and Poly(Ethyleneglycoladipate)

Cristofor I. Simionescu, Idir Rabia and Zorica Crişan

"P.Poni" Institute of Macromolecular Chemistry, R-6600 Jassy, Romania

SUMMARY

2-methyl-2-oxazoline was polymerized by using poly-(ethyleneglycoladipate) having tosylate end groups as an initiator. Polymerization was carried in bulk, and ABA type block copolymers were obtained containing poly(N-acetylethylenimine) as A block (hard part) and poly(ethyleneglycoladipate) as B block (soft part).

INTRODUCTION

It is well known that the cationic isomerization polymerization of 2-methyl-2-oxazoline initiated by methyltosylate proceeds through the growing species of oxazolinium tosylate via a living mechanism (SAEGUSA et al., 1972). On the other hand, the synthesis of block copolymer containing poly(N-acylethylenimine) was performed with macromolecular initiation of cyclic imino ethers polymerization (SAEGUSA and IKEDA, 1973; SEUNG and YOUNG, 1980; PERCEC,1981; SIMIONESCU et al.,1981, and 1982). In many cases α , w-telechelic polymers having p-toluen sulphonic acid esters at both chain ends were used as initiators for ABA type block copolymers. This present paper describes the use of poly(ethyleneglycoladipate) with tosyl end groups (PEGA-Ts) to initiate the polymerization in bulk of 2-methyl-2-oxazoline (MeOxz). In this way block copolymers containing poly(N-acetylethylenimine) as A block (hard part) and poly(ethyleneglycoladipate) as B block (soft part) have been synthesized. They are models for ABA thermoplastic elastomers (HOLDEN et al.,1969).

EXPERIMENTAL

<u>Reagents</u>: MeOxz was a commercial sample used without further purification. Tosyl chloride (TsCl) (commercial product) was recrystallized from petroleum ether. α, ω -poly(ethyleneglycoladipate) glycol (PEGA) was a commercial product which was purified by reprecipitation from its CHCl₃ solution with ethylic ether and dried in vacuo at ${}^{3}60^{\circ}$ C.M_n = 1900.

Preparation of p-toluensulfonic acid ester of a, W-

poly(ethyleneglycoladipate) glycol (PEGA-Ts) Tosyl chloride (15 g, 0.079 mole) was added to a stirred solution of PEGA (25 g, 0.013 mole ; 0.026 -0H mole) in a tetrahydrofuran (THF) (200 ml)-triethylamine (NEt₂) (11.5 ml, 0.079 mole) mixture. The mixture was kept at 20°C for 4 days with stirring. Then the Et₂N.HCl was separated by filtration. The product was isolated by precipitation in ice water NaHCO₂ solution and purified by reprecipitation (three times) from its THF solution with cold ethylic ether. The isolated polymer was dried at 35°C in vacuo. Yield : 16.5 g.

Preparation of MeOxz-PEGA-MeOxz block copolymers

A mixture of MeOxz and PEGA-TS was degased, and then the ampoule was scaled under argon.After 15 hours polymerization at 120°C, the reaction mixture was cooled and precipitated in ethylic ether,filtred and reprecipitated with ethylic ether from CHCl₂. The product was a white powder soluble in CHCl₂. The product in benzene (which dissolved PEGA-TS) and in water (which dissolved polyOxz).The yield was near 100 % in all cases.

Instrumental analysis

NMR spectra were taken on a C 60-HL JEOL spectrometer operating at 60 MHz.Infrared spectra (IR) were registered on a PERKIN-ELMER 577 spectrophotometer (KBr pellets).

RESULTS AND DISCUSSION

Tosylation of PEGA

HO – PEGA – OH + TSC1 – TSO – PEGA– OTS
I II
The IR spectrum of α, w -poly(ethyleneglycoladipate)
glycol was characterized by the absorption of primary
alcohol groups of polymer ends at 3500 cm ⁻¹ (Fig. 1).
The NMR spectrum showed a triplet at 8=3.85 ppm due to
CH_OH end groups protons.From these results the struc-
ture of PEGA is well determined.
In the IR spectrum of PEGA-Ts (Fig.1) the absorptions
at 750 and 820 cm ⁻¹ are ascribed to the benzene ring,
of tosylate and the absorptions at 1170 and 1370 cm ⁻¹
are assigned to the sulfonate ester group. The absorp-
tion at 3500 cm ⁻¹ in the starting PEGA disappeared by
tosylation. The NMR spectrum of PEGA-Ts (Fig. 2) showed
the complete disappearence of -CH_OH protons signal
and the appearence of aromatic and -CH, signals from
tosyl groups. These results clearely indicate quantita-
tive tosylation of the OH groups of PEGA. The molar
mass of PEGA-Ts determined by NMR , was $M_n = 2606$
$(DP_n = 13)$.

<u>Characterization of block copolymers</u> The polymerization of MeOxz by PEGA-Ts is considered to proceed according to the reaction scheme which has been proposed for the Oxz polymerization initiated by alkyl tosylates (SAEGUSA et al., 1973).

Initiation

Propagation

TABLE 1

Synthesis of ABA block copolymers containing Poly(MeOxz) as A block and PEGA as B block.

No.	PEGA-Ts mmole	MeOxz mmole	DP _n of A block		<pre>A Poly(MeOxz)/PEGA (struct.unit.molar ratio)</pre>	
			theor.	expt.	theor.	expt.
1	0.54	17.80	16.5	19.5	2.53	3.00
2	0.29	1.78	3.0	3.4	0.47	0.52
3	0.22	1.78	4.0	4.2	0.61	0.64
4	0,26	7.12	14.0	16.6	2.15	2.55
5	0.27	2.95	5.5	6.0	0.85	0.92

The IR spectra of block copolymers (Fig.1) showed absorptions of the conventional bands of PEGA and a strong band at 1630 cm⁻¹ assignable to the amide groups CO. A typical ¹H-NMR spectrum of one of these copolymers with protons assignement is presented in Fig.3.

The block copolymer compositions determined from the NMR spectra are presented in Table 1 and they are in fairly good agreement with the theoretic calculations. This means, that the living cationic mechanism is also valid for polymerization of MeOxz initiated by PEGA-Ts.

REFERENCES

HOLDEN,G.,BISHOP,E.T. and LEGGE,N.R.:J.Polym.Sci.: Part C, 26, 37 (1969) PERCEC, V: Polymer Bull. 5, 643 (1981) SAEGUSA, T.,IKEDA, H. and FUJII, H : Macromolecules 5, 359 (1972) SAEGUSA, T. and IKEDA, H. :Macromolecules 6, 805 (1973) SEUNG,S.L.N. and YOUNG,R.N. :J.Polym.Sci.,Polym.Lett. Ed., 18, 89, (1980) SIMIONESCU,C. I.,PERCEC, V. and RABIA, I. : Abstracts, 27th International Symposium on Macromolecules, Strasbourg 1981, vol. 1,293 (1981) SIMIONESCU,C. I.,RABIA,I. and HARFAS, I.: Polymer Bull. 7, 129 (1982)

Received April 6, accepted April 7, 1982